
Fetch Oracle - EVM
Contracts

Smart Contract Security
Assessment

Prepared by: Halborn

Date of Engagement: August 7th, 2023 - November 6th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 5

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 ASSESSMENT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 8

2 RISK METHODOLOGY 9

2.1 EXPLOITABILITY 10

2.2 IMPACT 11

2.3 SEVERITY COEFFICIENT 13

2.4 SCOPE 15

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 17

4 FINDINGS & TECH DETAILS 18

4.1 (HAL-01) EXECUTING VOTES IN GOVERNANCE CAN LEAD TO DENIAL OF

SERVICE OVER A DISPUTE - MEDIUM(4.8) 20

Description 20

Code Location 20

Proof Of Concept 21

BVSS 22

Recommendation 22

Remediation Plan 22

4.2 (HAL-02) FUNDING FEEDS OR CREATING SINGLE TIPS CAN LEAD TO DENIAL

OF SERVICE - MEDIUM(5.6) 23

Description 23

Code Location 23

1

BVSS 24

Recommendation 24

Remediation Plan 24

4.3 (HAL-03) FEEDS WILL APPEAR AS FUNDED EVEN IF THEY DONT HAVE

ENOUGH BALANCE TO COVER THE REWARDS - MEDIUM(5.0) 25

Description 25

Code Location 25

BVSS 27

Recommendation 27

Remediation Plan 27

4.4 (HAL-04) MISSING STORAGE GAPS - MEDIUM(5.2) 28

Description 28

BVSS 28

Recommendation 28

Remediation Plan 28

4.5 (HAL-05) CHAINLINK HELPER CAN RETURN INCORRECT PRICES -

MEDIUM(6.7) 29

Code Location 29

BVSS 29

Recommendation 29

Remediation Plan 30

4.6 (HAL-06) IMPLEMENTATION CONTRACT CAN BE INTIIALIZED - LOW(2.5)

31

Description 31

BVSS 31

Recommendation 31

Remediation Plan 31

2

4.7 (HAL-07) REDUNDANT DATA OVERWRITING - LOW(2.5) 32

Description 32

Code Location 32

BVSS 32

Recommendation 32

Remediation Plan 33

4.8 (HAL-08) FLOATING PRAGMA - INFORMATIONAL(0.0) 34

Description 34

Recommendation 34

Remediation Plan 34

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE

0.1 Document Creation 08/23/2023

0.2 Document Updates 08/24/2023

0.3 Draft Version 08/31/2023

0.4 Draft Review 09/01/2023

0.5 Draft Review 09/01/2023

1.0 Document Updates 11/01/2023

1.1 Document Updates 11/02/2023

1.2 Document Updates Review 11/13/2023

1.3 Document Updates Review 11/13/2023

2.0 Remediation Plan 12/04/2023

2.1 Remediation Plan Review 12/05/2023

2.2 Remediation Plan Review 12/06/2023

4

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

5

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com

6

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Fetch Oracle engaged Halborn to conduct a security assessment on their

smart contracts. The security assessment was scoped to the smart contracts

provided. Commit hashes and further details can be found in the Scope

section of this report.

The fetch oracle project is a decentralized oracle meant to be run on

pulse chain, forked from the tellor oracle protocol.

1.2 ASSESSMENT SUMMARY

Halborn was provided 7 weeks across two different periods for the en-

gagement:

- August 7th - August 29th

- October 2nd - November 6th

A full-time security engineer was assigned to review the security of the

smart contracts in scope. The security team consists of a blockchain and

smart contract security experts with advanced penetration testing and

smart contract hacking skills, and deep knowledge of multiple blockchain

protocols.

The purpose of the assessment is to:

• Identify potential security issues within the smart contracts.

• Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some security risks, which were addressed

and accepted by Fetch Oracle. The main ones were the following:

• The client accepted the risk of a denial of service over disputes.

• The client accepted the risk of funding feeds or creating single

tips, leading to a denial of service.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this assessment. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the assessment:

• Research into architecture and purpose.

• Smart contract manual code review and walkthrough.

• Graphing out functionality and contract logic/connectivity/functions

(solgraph).

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing by custom scripts.

• Testnet deployment (Foundry, Brownie).

8

EX
EC

UT
IV

E
OV

ER
VI

EW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

10

EX
EC

UT
IV

E
OV

ER
VI

EW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

11

EX
EC

UT
IV

E
OV

ER
VI

EW

Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

12

EX
EC

UT
IV

E
OV

ER
VI

EW

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

13

EX
EC

UT
IV

E
OV

ER
VI

EW

The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

14

EX
EC

UT
IV

E
OV

ER
VI

EW

2.4 SCOPE

1. IN-SCOPE REPOSITORIES & COMMIT IDS :

Code repositories:

1. Fetch Oracle Governance

• Repository: fetchoracle/governance

• Commit ID: d82443ca59d47e00d066a14f82f1ca858da89077

• Smart contracts in scope:

1. Governance.sol (contracts/Governance.sol)

2. Fetch Oracle Autopay

• Repository: fetchoracle/autoPay

• Commit ID: 6a5b510898c3a6f698054356c4448946f59fcdc3

• Smart contracts in scope:

1. Autopay.sol (contracts/Autopay.sol)

2. QueryDataStorage.sol (contracts/QueryDataStorage.sol)

3. Fetch Oracle Fetch Flex

• Repository: fetchoracle/fetchFlex

• Commit ID: 25adf745995f50b31d30078f90727cf1ef65e601

• Smart contracts in scope:

1. FetchFlex.sol (contracts/FetchFlex.sol)

4. Fetch Oracle Fetch Token

• Repository: fetchoracle/FETCH-Token

• Commit ID: 0e6ea5abdbc3ae06bb6e27074343b2c391b7dc48

15

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/fetchoracle/governance/tree/audit
https://github.com/fetchoracle/governance/tree/d82443ca59d47e00d066a14f82f1ca858da89077
https://github.com/fetchoracle/autoPay
https://github.com/fetchoracle/autoPay/tree/6a5b510898c3a6f698054356c4448946f59fcdc3
https://github.com/fetchoracle/fetchFlex
https://github.com/fetchoracle/fetchFlex/tree/25adf745995f50b31d30078f90727cf1ef65e601
https://github.com/fetchoracle/FETCH-token
https://github.com/fetchoracle/FETCH-token/tree/0e6ea5abdbc3ae06bb6e27074343b2c391b7dc48

• Smart contracts in scope:

1. FetchToken.sol (contracts/FetchToken.sol)

5. Fetch Oracle Using Fetch

• Repository: fetchoracle/usingfetch

• Commit ID: 381dcdbeeedacc653c9f5f2f800f65f277aa4e9b

• Smart contracts in scope:

1. UsingFetchUpgradeReady.sol (contracts/UsingFetchUpgradeReady.

sol)

6. Secondary Oracle

• Repository: fetchoracle/secondaryOracle

• Commit ID: 3d1cc0b

• Smart contracts in scope:

1. SecondaryOracle.sol (contracts/SecondaryOracle.sol)

2. ChainlinkHelper.sol (contracts/ChainlinkHelper.sol)

3. TwapHelper.sol (contracts/TwapHelper.sol)

Out-of-scope

• Third-party libraries and dependencies.

• Economic attacks.

2. REMEDIATION COMMIT IDs :

• 608339b7fe47043852b29474fbd2ef2412ba470b

• f7ae06d1728b5665c5e35f5edf4ec6c52eeb2a8a

• 5ac3f75e51cbb392825c5dd1d039bd7d02a5f97b

• 49f6f4022250b972fcf419c5c0f55e5457b74401

• a853d3770cafd19a55fbee74e6b83b20e7db2471

16

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/fetchoracle/usingfetch
https://github.com/fetchoracle/usingfetch/tree/381dcdbeeedacc653c9f5f2f800f65f277aa4e9b
https://github.com/fetchoracle/secondaryOracle
https://github.com/fetchoracle/secondaryOracle/tree/3d1cc0bb150e0ff9e8ab75b1502a8608043a385a
https://github.com/fetchoracle/usingfetch/commit/608339b7fe47043852b29474fbd2ef2412ba470b
https://github.com/fetchoracle/fetchFlex/commit/f7ae06d1728b5665c5e35f5edf4ec6c52eeb2a8a
https://github.com/fetchoracle/governance/commit/5ac3f75e51cbb392825c5dd1d039bd7d02a5f97b
https://github.com/fetchoracle/autoPay/commit/49f6f4022250b972fcf419c5c0f55e5457b74401
https://github.com/fetchoracle/secondaryOracle/commit/a853d3770cafd19a55fbee74e6b83b20e7db2471

3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 5 2 1

17

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) EXECUTING VOTES IN
GOVERNANCE CAN LEAD TO DENIAL OF

SERVICE OVER A DISPUTE
Medium (4.8) RISK ACCEPTED

(HAL-02) FUNDING FEEDS OR CREATING
SINGLE TIPS CAN LEAD TO DENIAL OF

SERVICE
Medium (5.6) RISK ACCEPTED

(HAL-03) FEEDS WILL APPEAR AS
FUNDED EVEN IF THEY DONT HAVE

ENOUGH BALANCE TO COVER THE REWARDS
Medium (5.0) RISK ACCEPTED

(HAL-04) MISSING STORAGE GAPS Medium (5.2) SOLVED - 12/03/2023

(HAL-05) CHAINLINK HELPER CAN
RETURN INCORRECT PRICES

Medium (6.7) SOLVED - 12/03/2023

(HAL-06) IMPLEMENTATION CONTRACT
CAN BE INTIIALIZED

Low (2.5) SOLVED - 12/03/2023

(HAL-07) REDUNDANT DATA OVERWRITING Low (2.5) RISK ACCEPTED

(HAL-08) FLOATING PRAGMA
Informational

(0.0)
ACKNOWLEDGED

18

EX
EC

UT
IV

E
OV

ER
VI

EW

19

FINDINGS & TECH
DETAILS

4.1 (HAL-01) EXECUTING VOTES IN
GOVERNANCE CAN LEAD TO DENIAL OF
SERVICE OVER A DISPUTE - MEDIUM
(4.8)

Description:

The executeVote() function in the Governance contract executes the votes

and transfers the corresponding balances to the initiator and reporter.

In order to perform these operations, it iterates over the voteRounds

array, retrieving information from each vote round. However, there is

no hardcoded limit to the length of this array and the operation is not

performed in batches.

This means, that with enough vote rounds in the array, it would be

possible for the executeVote function to run out of gas.

Code Location:

Listing 1: src/governance/Governance.sol (Line 253)

253 for (

254 _i = voteRounds[_thisVote.identifierHash]. length;

255 _i > 0;

256 _i --

257) {

258 _voteID = voteRounds[_thisVote.identifierHash][_i - 1];

259 _thisVote = voteInfo[_voteID];

260 // If the first vote round , also make sure to transfer the

ë reporter 's slashed stake to the initiator

261 if (_i == 1) {

262 token.transfer(

263 _thisVote.initiator ,

264 _thisDispute.slashedAmount

265);

266 }

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

267 token.transfer(_thisVote.initiator , _thisVote.fee);

268 }

Proof Of Concept:

Listing 2: test/Governance.t.sol

1 function test_Governance_ExecuteVotes_DOS () public {

2 bytes memory queryData = abi.encode(

3 "SpotPrice",

4 abi.encode("btc", "usd")

5);

6

7 token.increaseAllowance(address(autoPay), 100 ether);

8

9 autoPay.setupDataFeed(

10 keccak256(queryData),

11 1 ether , // Reward / 1 TRB

12 block.timestamp + 1 days , // Start Time / Tomorrow

13 1 hours , // Interval / We want to retrieve price once per

ë hour.

14 5 minutes , // Window / We want it reported within 5

ë minutes.

15 100, // Price Threshold

16 10, // Reward Increase per second.

17 queryData ,

18 100 ether

19);

20

21 token.increaseAllowance(address(flex), 1 ether);

22 flex.depositStake (1 ether);

23

24 skip(1 days);

25

26 uint256 timestamp = block.timestamp;

27

28 flex.submitValue(

29 keccak256(queryData),

30 abi.encodePacked(uint256 (1 ether)),

31 0,

32 queryData

33);

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

34

35 token.increaseAllowance(address(governance), 1000000 ether);

36

37 for (uint i; i < 300; ++i) {

38 governance.beginDispute(keccak256(queryData), timestamp);

39 skip(6 days);

40 governance.tallyVotes(i + 1);

41 }

42

43 skip(1 days);

44 governance.executeVote (300);

45 }

BVSS:

AO:A/AC:M/AX:H/C:N/I:C/A:C/D:C/Y:C/R:N/S:C (4.8)

Recommendation:

Implement a batch system so if the array surpasses a certain length,

votes are executed in batches.

Remediation Plan:

RISK ACCEPTED: The Fetch Oracle team accepted the risk as they considered

that based on the extremely high-cost and extended time needed to dispute

and vote on issues, it is highly unlikely for the contract to end up in

this state. It wouldn’t be profitable for anyone to attempt this, so

this scenario is extremely unlikely.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.2 (HAL-02) FUNDING FEEDS OR
CREATING SINGLE TIPS CAN LEAD TO
DENIAL OF SERVICE - MEDIUM (5.6)

Description:

Some external view functions within the AutoPay contract such as

getFundedFeedDetails() or getFundedSingleTipsInfo loop through whole

arrays saved as state variables.

If this arrays gets too big, for example, by getting enough funded feeds

it is possible to reach a point where the function may run out of gas

before ending execution.

However, because these are external view functions this would only happen

if called by an external contract, as view functions when called through

an RPC are processed by the RPC and do not consume any gas.

Code Location:

Listing 3: src/autopay/Autopay.sol (Line 422)

414 function getFundedFeedDetails ()

415 external

416 view

417 returns (FeedDetailsWithQueryData [] memory)

418 {

419 bytes32 [] memory _feeds = this.getFundedFeeds ();

420 FeedDetailsWithQueryData []

421 memory _details = new FeedDetailsWithQueryData [](_feeds.

ë length);

422 for (uint256 i = 0; i < _feeds.length; i++) {

423 FeedDetails memory _feedDetail = this.getDataFeed(_feeds[i

ë]);

424 bytes32 _queryId = this.getQueryIdFromFeedId(_feeds[i]);

425 bytes memory _queryData = queryDataStorage.getQueryData(

ë _queryId);

426 _details[i]. details = _feedDetail;

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

427 _details[i]. queryData = _queryData;

428 }

429 return _details;

430 }

BVSS:

AO:A/AC:M/AX:M/C:N/I:C/A:C/D:N/Y:N/R:N/S:U (5.6)

Recommendation:

Allow to specify a range in the index to retrieve when calling the

function.

Remediation Plan:

RISK ACCEPTED: The issue would only affect the external protocols calling

this oracle from another smart contract. Therefore, the Fetch Oracle team

accepted the risk as they considered that the problem does not directly

affect the Fetch Protocol. As these are external view functions meant to

be called directly through an RPC node without using any gas.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.3 (HAL-03) FEEDS WILL APPEAR AS
FUNDED EVEN IF THEY DONT HAVE ENOUGH
BALANCE TO COVER THE REWARDS -
MEDIUM (5.0)

Description:

When funding a feed in the Autopay contract through the fundFeed and tip

functions, the feed / query will be pushed to the feedsWithFunding and

queryIdsWithFunding arrays respectively and will therefore show as funded

as long as at least 1 token is sent. However, 1 token will in most tokens

not be enough to cover the reward setup in the feed.

Therefore, users may submit data thinking they will get the feed base

reward, but when the balance of the feed is lower than the base reward,

they will get the balance of the feed which may be as small as 1 token.

Moreover, this difference in tokens the user receives is not accumulated,

meaning once the user claims his tips he will get whatever the balance

is, and he will not be able to recover the remaining amount until the

reward in future claims.

Code Location:

Listing 4: src/autopay/Autopay.sol (Line 189)

160 function claimTip(

161 bytes32 _feedId ,

162 bytes32 _queryId ,

163 uint256 [] calldata _timestamps

164) external {

165 Feed storage _feed = dataFeed[_queryId][_feedId];

166 uint256 _balance = _feed.details.balance;

167 require(_balance > 0, "no funds available for this feed");

168 uint256 _cumulativeReward;

169 for (uint256 _i = 0; _i < _timestamps.length; _i++) {

170 require(

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

171 block.timestamp - _timestamps[_i] > 12 hours ,

172 "buffer time has not passed"

173);

174 require(

175 getReporterByTimestamp(_queryId , _timestamps[_i]) ==

ë msg.sender ,

176 "message sender not reporter for given queryId and

ë timestamp"

177);

178 _cumulativeReward += _getRewardAmount(

179 _feedId ,

180 _queryId ,

181 _timestamps[_i]

182);

183 if (_cumulativeReward >= _balance) {

184 // Balance runs out

185 require(

186 _i == _timestamps.length - 1,

187 "insufficient balance for all submitted timestamps

ë "

188);

189 _cumulativeReward = _balance;

190 // Adjust currently funded feeds

191 if (feedsWithFunding.length > 1) {

192 uint256 _idx = _feed.details.feedsWithFundingIndex

ë - 1;

193 // Replace unfunded feed in array with last

ë element

194 feedsWithFunding[_idx] = feedsWithFunding[

195 feedsWithFunding.length - 1

196];

197 bytes32 _feedIdLastFunded = feedsWithFunding[_idx

ë];

198 bytes32 _queryIdLastFunded = queryIdFromDataFeedId

ë [

199 _feedIdLastFunded

200];

201 dataFeed[_queryIdLastFunded][_feedIdLastFunded]

202 .details

203 .feedsWithFundingIndex = _idx + 1;

204 }

205 feedsWithFunding.pop();

206 _feed.details.feedsWithFundingIndex = 0;

207 }

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

208 _feed.rewardClaimed[_timestamps[_i]] = true;

209 }

210 _feed.details.balance -= _cumulativeReward;

211 require(token.transfer(msg.sender , _cumulativeReward));

212 emit TipClaimed(_feedId , _queryId , _cumulativeReward , msg.

ë sender);

213 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:M/R:N/S:U (5.0)

Recommendation:

Ensure feeds / queries only show as feedsWithFunding and

queryIdsWithFunding when they have at least enough balance to at

least cover the base rewards.

Remediation Plan:

RISK ACCEPTED: The Fetch Oracle team accepted the risk of this issue as

they considered that this issue is mitigated by external scripts being

run in conjunction with Telliot. These scripts scan for profitable tips

before submitting a price to Fetch Oracle. This allows reporters to only

report when there are enough tips available for a profit.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.4 (HAL-04) MISSING STORAGE GAPS -
MEDIUM (5.2)

Description:

The contract UsingFetchUpgradeable is meant to be inherited by other

contracts. However, it does not contain a __gap variable, even though it

is upgradeable.

This means that in the event of adding new state variables when upgrading

the contract, it can lead to storage slot collisions.

BVSS:

AO:A/AC:L/AX:H/C:N/I:C/A:C/D:N/Y:N/R:N/S:C (5.2)

Recommendation:

Consider adding a __gap variable in the UsingFetch contract.

Remediation Plan:

SOLVED: The Fetch Oracle team solved the issue in the following commit:

608339b7fe47043852b29474fbd2ef2412ba470b

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/fetchoracle/usingfetch/commit/608339b7fe47043852b29474fbd2ef2412ba470b

4.5 (HAL-05) CHAINLINK HELPER CAN
RETURN INCORRECT PRICES - MEDIUM
(6.7)

The ChainlinkHelper contract retrieves the price from a Chainlink price

feed. However, the updatedAt value is not being checked to check that

the round is complete.

This can lead to the oracle returning an incorrect price, as the round

might be incomplete.

Code Location:

Listing 5: src/SecondaryOracle/ChainLinkHelper.sol

17 function getPrice(bytes memory _data) external returns (bool ,

ë uint256 , uint256 , bool) {

18 (

19 /* uint80 roundID */,

20 int price ,

21 /*uint startedAt */,

22 uint timestamp ,

23 /* uint80 answeredInRound */

24) = aggregator.latestRoundData ();

25

26 return (true , uint(price), timestamp , true);

27 }

BVSS:

AO:A/AC:L/AX:M/C:N/I:C/A:N/D:N/Y:N/R:N/S:U (6.7)

Recommendation:

Check the updatedAt parameter when getting the price.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 6: src/SecondaryOracle/ChainlinkHelper.sol

1 require(updatedAt > 0, "Round is not complete");

2 require(answer >= 0, "Malfunction"); price");

Remediation Plan:

SOLVED: The Fetch Oracle team solved this issue since the Chainlink oracle

price feed is not available in PulseChain, the Chainlink Helper was never

intended to be used. Instead, the Secondary Oracle TWAP Helper is used.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.6 (HAL-06) IMPLEMENTATION
CONTRACT CAN BE INTIIALIZED - LOW
(2.5)

Description:

There is no constructor in the FetchFlex, Governance, Autopay and

SecondaryOracle contracts which disables initializers for the given

contract.

This means that when deploying the implementation contract it is left

uninitialized and available for anyone to initialize and become the owner

of the contract, which is often a vector used in Phishing attacks.

BVSS:

AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (2.5)

Recommendation:

Implement a constructor calling the _disableInitializers() function.

Remediation Plan:

SOLVED: The Fetch Oracle team fixed the issue in the following commits:

• f7ae06d1728b5665c5e35f5edf4ec6c52eeb2a8a

• 5ac3f75e51cbb392825c5dd1d039bd7d02a5f97b

• 49f6f4022250b972fcf419c5c0f55e5457b74401

• a853d3770cafd19a55fbee74e6b83b20e7db2471

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/fetchoracle/fetchFlex/commit/f7ae06d1728b5665c5e35f5edf4ec6c52eeb2a8a
https://github.com/fetchoracle/governance/commit/5ac3f75e51cbb392825c5dd1d039bd7d02a5f97b
https://github.com/fetchoracle/autoPay/commit/49f6f4022250b972fcf419c5c0f55e5457b74401
https://github.com/fetchoracle/secondaryOracle/commit/a853d3770cafd19a55fbee74e6b83b20e7db2471

4.7 (HAL-07) REDUNDANT DATA
OVERWRITING - LOW (2.5)

Description:

The storeData() function from the QueryDataStorage library, used in the

Autopay contract. Stores the data of the query data related to its query

ID in a mapping.

However, this function is called several times within the code even if

the data is already stored, which leads to redundancy and unnecessary gas

usage.

Code Location:

Listing 7: src/autopay/Autopay.sol (Line 305)

304 queryIdFromDataFeedId[_feedId] = _queryId;

305 queryDataStorage.storeData(_queryData);

306 emit NewDataFeed(_queryId , _feedId , _queryData , msg.sender);

307 if (_amount > 0) {

308 fundFeed(_feedId , _queryId , _amount);

309 }

310 return _feedId;

BVSS:

AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:Uğ1‘ (2.5)

Recommendation:

Only call the storeData function the first time a query data needs to be

stored.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

RISK ACCEPTED: The Fetch Oracle team accepted the risk of this finding.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.8 (HAL-08) FLOATING PRAGMA -
INFORMATIONAL (0.0)

Description:

Contracts should be deployed with the same compiler version and flags

that they have been tested with thoroughly. Locking the pragma helps to

ensure that contracts do not accidentally get deployed using, for example,

an outdated compiler version that might introduce bugs that affect the

contract system negatively.

Recommendation:

Set the pragma to a fixed version.

Remediation Plan:

ACKNOWLEDGED: The Fetch Oracle team acknowledged this finding.

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof Of Concept
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

